

Ceph Ansible

Mr. Charnsilp Chinprasert

Outline

- Architecture
- Ceph & OpenStack
- Workshop
- Performance Tuning
- Hardware Design

Software Defined Storage

 \rightarrow

 \rightarrow

 \rightarrow

Proprietary hardware

- Scale-Up architecture
- Hardware-based intelligence
- Closed development process

- Common, off-the-shelf hardware
- Scale-Out architecture
- Software-based intelligence More programmability, agility, and control
- Open development process More flexible, well integrated technology

What is Ceph?

- Distributed Storage System
- Self healing & Self manage
- Scale horizontally
- No single point of failure
- Runs on commodity hardware
 - no vendor lock-in
 - commodity != consumer grade
- Open source
 - GPL v2 license
 - Community =driven

History

10 years in the making

Paper: http://www.ssrc.ucsc.edu/Papers/weil-osdi06.pdf

Ceph versions

TIMELINE

		Dumpling LTS	Emperor Stable	Firefly LTS	Giant Stable	Hammer LTS	Infernalis Stable	Jewel LTS
First release		August 2013	November 2013	May 2014	October 2014	April 2015	November 2015	April 2016
Estimated retirement		March 2015		January 2016		November 2016	June 2016	November 2017
Actual retirement		May 2015	May 2014	December 2015	April 2015			
	Development Testing	Dumpling LTS	Emperor Stable	Firefly LTS	Giant Stable	Hammer LTS	Infernalis Stable	Jewel LTS
August 2016						0.94.9 0.94.8		
June 2016	11.0.0							10.2.2
May 2016						0.94.7		10.2.1
April 2016	10.1.2							10.2.0
	10.1.1							
March 2016	10.1.0							
	10.0.5							
February 2016	10.0.3					0.94.6	9.2.1	
January 2016	10.0.2							
December 2015	10.0.1							
November 2015	10.0.0			0.80.11			9.2.0	
October 2015	9.1.0					0.94.5		
						0.94.4		
August 2015	9.0.3					0.94.3		
July 2015	9.0.2			0.80.10				
June 2015	9.0.1					0.94.2		
May 2015	9.0.0							
April 2015					0.87.2	0.94.1		
						0.94		

March 2015

0.80.9

Ceph unified storage

Ceph components

· Rados

- Manage object store
- · LibRados
 - Library for access Object store

· RDB

• Linux kernel client

· Ceph FS

- File system
- Fuse

· RadosGW

- REST gateway
- S3 compatible

Ceph core components

Mon

- Tracks & Monitor the health of entire cluster
- Maintains the map of cluster state
- Provide consensus for distributed decision-making
- DO NOT serve stored data to clients
- use Paxos for solving consensus in a network of unreliable processors

OSD

- Store the actual data as objects on physical disks
- At least 3 nodes in cluster (Data replication)
- Serve stored data to clients
- Intelligently peer to perform replication tasks

Paxos: https://en.wikipedia.org/wiki/Paxos_(computer_science)

Ceph core components

Where do object live?

A metadata server?

Calculated Placement

Introducing CRUSH

Ceph save data to Disk

A flat namespace no hierarchy of directories!

Data Replication

CRUSH

Controlled Replication Under Scalable Hashing

- Pseudo-random placement algorithm
 - Fast calculation, no lookup
 - Repeatable, deterministic
- Statistically uniform distribution
- Rule-based configuration
 - Infrastructure topology aware
 - Adjustable replication
 - Weighting

Pool

Recap

Self healing

Self healing

Auto Re-balancing

Auto Re-balancing

Auto Re-balancing

Ceph & OpenStack

OpenStack components

- Storage
 - Image Service (Glance)
 - Compute Storage (Nova)
 - Object Storage (Swift)

Ceph & OpenStack

RadosGW

•

- Keystone (Authentication)
- Swift (Data Storage)

LibRBD

- Cinder (Volume)
- Glance (Image)
- Nova (Ephemeral)

Ceph & OpenStack

RBD Stores Virtual Disks

RADOS BLOCK DEVICE:

- Storage of disk images in RADOS
- Decouples VMs from host
- Images are striped across the cluster (pool)
- Snapshots
- Copy-on-write clones
- Support in:
 - Mainline Linux Kernel (2.6.39+) and RHEL 7
 - OpenStack, CloudStack, Nebula, Proxmox

Linux & RBD

Hypervisor & Ceph RBD

Network Architecture

Network Architecture

Public network

• Recommend MTU 9000

Preparation for OpenStack Ansible

Preparation for OpenStack Ansible

- **1. Create Users**
- 2. Create Pools
- 3. Set PG for each pools.

dummy:

•

•

```
fetch_directory: fetch/
cephx: true
openstack_config: true
openstack_glance_pool:
    name: glance-images
    pg_num: "128"
openstack_cinder_pool:
    name: cinder-volumes
    pg_num: "512"
openstack_nova_pool:
    name: nova-vms
    pg_num: "128"
openstack_cinder_backup_pool:
    name: cinder-backups
gg_num: "128"
```

openstack_keys:

- { name: client.glance, value: "mon 'allow r' osd 'allow class-read object_prefix rbd_children, allow rwx pool={{ ope
- { name: client.cinder, value: "mon 'allow r' osd 'allow class-read object_prefix rbd_children, allow rwx pool={{ ope
- { name: client.cinder-backup, value: "mon 'allow r' osd 'allow class-read object_prefix rbd_children, allow rwx pool

Why is Ceph Ansible ?
Why is Ceph Ansible ?

- Ready for production
- Basic Ceph & Linux tuning
- Automate Installation
- Configuration management
- Repeatable
- Flexible

Branch: master - ceph-ans	ible / roles /
We leseb iscsi-gw: preparing the	e new iscsi role 🛛 🚥
ceph-agent	ceph-agent: i
ceph-client	ceph-client: ir
ceph-common-coreos	Fix not creatir
ceph-common	iscsi-gw: prer
ceph-fetch-keys	ceph-fetch-ke
ceph-iscsi-gw	iscsi-gw: prer
ceph-mds	docker: use c
ceph-mon	NFS fixes
ceph-nfs	NFS fixes
ceph-osd	docker: fix os
ceph-rbd-mirror	docker: use c
Ceph-restapi	docker: use c
ceph-rgw	NFS fixes
ceph.ceph-common	rollback previ

NTP

- NTP synchronization is critical for the Ceph cluster
 - Monitors can be affected by significant clock skew across the MON nodes
 - By default the maximum tolerated clock skew is 50 ms
 - "mon clock drift allowed"

Workshop

Network Design Workshop

Private network: Data replication

Public Network: Client Access

Virtual box NAT : Download package (optional)

Hardware Design Workshop

Host	Role	Network	Interface	Network Address
ceph-node1	Ceph Client + Ceph MON + Ceph OSD	Virtualbox NAT	eth0	DHCP
		Ceph public network	eth1	192.168.1.101
		Ceph private network	eth2	192.168.2.101
ceph-node2	Ceph MON + Ceph OSD	Virtualbox NAT	eth0	DHCP
		Ceph public network	eth1	192.168.1.102
		Ceph private network	eth2	192.168.2.103
ceph-node3	Ceph MON + Ceph OSD	Virtualbox NAT	eth0	DHCP
		Ceph public network	eth1	192.168.1.103
		Ceph private network	eth2	192.168.2.103

Virtual Hardware	Specification
CPU	1 CPU
Memory	1300 MiB
Disk	3 x 10 G (VDI) 1 x 20 G (VDI)
Network	3 X 1 Gib Network

Design scenarios

http://www.sebastien-han.fr/images/ceph-a-single-io.png

Scenarios

- First scenario: (If OSD is SSD, Recommend !)
 - Journal and OSD data on the same device

Second scenario:

Single journal device for N OSDs

Third scenario: (use in workshop)

N journal devices for N OSDs

Fourth scenario:

Use directory instead of disk for OSDs

Hardware Design

Minimum Hardware

Process	Criteria	Minimum Recommended
ceph-osd	Processor	 1x 64-bit AMD-64 1x 32-bit ARM dual-core or better 1x i386 dual-core
	RAM	~1GB for 1TB of storage per daemon
	Volume Storage	1x storage drive per daemon
	Journal	1x SSD partition per daemon (optional)
	Network	2x 1GB Ethernet NICs
ceph-mon	Processor	 1x 64-bit AMD-64/i386 1x 32-bit ARM dual-core or better 1x i386 dual-core
	RAM	1 GB per daemon
	Disk Space	10 GB per daemon
	Network	2x 1GB Ethernet NICs

http://docs.ceph.com/docs/jewel/start/hardware-recommendations/

Hardware Planning

1TB

- 1GB Memory RAM (Metadata)
- 500MB Memory RAM (No Metadata)
- 0.5 Core CPUs
- Hard disk drives
 - Journal: **SSD**
 - OSD: SSD/Sata/SAS
- Network
 - at least 1Gbps for public
 - at least 1Gbps for data replication

PG Calculator

http://ceph.com/pgcalc/

0	enStack Add Pool Generate Comman		Pool Generate Commands			
			Target PGs per			
	Pool Name	Size	05D #	%Data	OSD	Suggested PG Count
ŵ	cinder-backup	3	100	25.00	200	2048
ŵ	cinder-volumes	3	100	53.00	200	4096
ŵ	ephemeral-vms	3	100	15.00	200	1024
¢	glance-images	3	100	7.00	200	512
	Total Da	ta Perce	ntage: 1	00.00%		PG Total Count: 7680

Notes

- "Total Data Percentage" below table should be a multiple of 100%.
- "Total PG Count" below table will be the count of Primary PG copies. However, when calculating total PGs per OSD average, you must include all copies.
- It's also important to know that the PG count can be increased, but NEVER decreased without destroying / recreating the pool. However, increasing the PG Count of a pool is one of the most impactful events in a Ceph Cluster, and should be avoided for production clusters if possible.

Logic behind Suggested PG Count

(Target PGs per OSD) * (OSD #) * (%Data)

(Size)

- If the value of the above calculation is less than the value of (OSD#) / (Size), then the value is updated to the value of ((OSD#) / (Size)). This is to ensure even load / data distribution by allocating at least one Primary or Secondary PG to every CSD for every Pool.
- The output value is then rounded to the nearest power of 2.
 Tip: The nearest power of 2 provides a marginal improvement in efficiency of the CRUSH algorithm.
- If the nearest power of 2 is more than 25% below the original value, the next higher power of 2 is used.
- The objective of this calculation and the target ranges noted in the 'Key' section above are to ensure that there are sufficient.
 Placement Groups for even data distribution throughout the cluster, while not going high enough on the PG per OSD ratio to cause problems during Recovery and/or Backfill operations.
- Effects of empty or non-active pools:
 - Empty or otherwise non-active pools should not be considered helpful toward even data distribution throughout the cluster.
 - However, the PGs associated with these empty / non-active pools still consume memory and CPU overhead.

Conclusion

Ceph components

· Rados

- Manage object store
- · LibRados
 - Library for access Object store

· RDB

• Linux kernel client

· Ceph FS

- File system
- Fuse

· RadosGW

- REST gateway
- S3 compatible

Pool

Network Architecture

Public network

• Recommend MTU 9000

Hardware Planning

1TB

- 1GB Memory RAM (Metadata)
- 500MB Memory RAM (No Metadata)
- 0.5 Core CPUs
- Hard disk drives
 - Journal: **SSD**
 - OSD: SSD/Sata/SAS
- Network
 - at least 1Gbps for public
 - at least 1Gbps for data replication

http://www.slideshare.net/openstackindia/ceph-openstackjun2015meetup http://image.slidesharecdn.com/inktankdellopenstacksummitpreso-2013-04-12-130424120346-phpapp02/95/wicked-easy-ceph-block-storage-openstack-deployment-withcrowbar-9-638.jpg?cb=1366805568 http://www.slideshare.net/dalgaaf/linux-stammtisch-munich-ceph-overview-experiences-and-outlook

Ceph Ansible Workshop #1

Mr. Charnsilp Chinprasert

Host	Role	Network	Interface	Network Address
ceph-node1 Ceph Client +		Virtualbox NAT	eth0	DHCP
	Ceph MON + Ceph OSD	Ceph public network	eth1	192.168.1.101
		Ceph private network	eth2	192.168.2.101
ceph-node2	Ceph MON + Ceph OSD	Virtualbox NAT	eth0	DHCP
		Ceph public network	eth1	192.168.1.102
		Ceph private network	eth2	192.168.2.103
ceph-node3 (Ceph MON + Ceph OSD	Virtualbox NAT	eth0	DHCP
		Ceph public network	eth1	192.168.1.103
		Ceph private network	eth2	192.168.2.103

Virtual Machine Hardware Configuration

Ceph Node 1

Virtual Hardware	Specification
CPU	1 CPU
Memory	1300 MiB
Disk	3 x 10 G (VDI) 1 x 20 G (VDI)
Network	3 X 1 Gib Network

Ceph Node 2

Virtual Hardware	Specification
CPU	1 CPU
Memory	1024 MiB
Disk	3 x 10 G (VDI) 1 x 20 G (VDI)
Network	3 X 1 Gib Network

Ceph Node 3

Virtual Hardware	Specification
CPU	1 CPU
Memory	1024 MiB
Disk	3 x 10 G (VDI) 1 x 20 G (VDI)
Network	3 X 1 Gib Network

เข้าใช้งานเครื่อง Ceph node 1 เพื่อรัน Ansible

เราจะติดตั้ง Ceph โดยใช้ Ceph node 1 เป็นเครื่องที่รัน Ansible ดังนั้น ให้เรา SSH ไปยังเครื่อง Ceph node 1 ครับ โดย VM ที่เตรียมให้ใช้

User: ubuntu

Password: Ubuntu

1) Linux/OSX ใช้คำสั่ง

\$ ssh ubuntu@192.168.1.101

2) Windows ให้โหลด โปรแกรม putty มาใช้งานครับ

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Deploy Ceph Cluster with Ceph-Ansible

ตรวจสอบ host file ตรวจสอบทั้ง 3 เครื่อง

\$ sudo vim /etc/hosts

ให้เป็นดังนี้

127.0.0.1 localhost
192.168.1.101 ceph-node1
192.168.1.102 ceph-node2
192.168.1.103 ceph-node3
The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Prepare Ansible and Source file ให้ทำที่ ceph-node1

1) ติดตั้ง PPA ของ Ansible เพื่อให้สามารถติดตั้ง version ใหม่ได้

\$ sudo add-apt-repository -y ppa:ansible/ansible

\$ sudo apt-get update

\$ sudo apt-get install -y ansible

2) ตรวจสอบ version

ansible 2.1.0.0 config file = /etc/ansible/ansible.cfg configured module search path = Default w/o overrides

3) ทำการส่ง pubilc key จาก client ไปยัง OSD+MON Server

ให้ทำทีเครื่องceph-client

4) ทำการ clone source code ของ ceph-ansible เพื่อเตรียมพร้อมสำหรับการพัฒนา

\$ git clone https://github.com/ceph/ceph-ansible.git

Component Versions

Component	Details
Host operating system	Ubuntu 14.04.5 LTS
Kernel	4.4.0-36-generic
Ansible	ansible 2.1.1.0
Ceph Ansible	Branch: master (19b3caef2ba2f894e0f147a645cb6597b619a9b5)
Ceph	ceph version 10.2.2 (Jewel)

Configure inventory, variable and playbook file

1) สร้างdirectory สำหรับการ deploy ceph

\$ mkdir workspaces && cd workspaces

2) สร้าง environment สำหรับการ deploy

\$ mkdir dev-1 && cd dev-1

3) สร้างdirectory สำหรับการเก็บ variable

\$ mkdir group_vars host_vars

4) สร้าง configuration ของ ansible ที่ใช้สำหรับ

\$ vim ansible.cfg

เพิ่มเป็นดังนี้

[defaults]

roles_path = ../../roles action_plugins = ../../plugins/actions inventory = inventories remote_port = 22 remote_user = ubuntu host_key_checking = False deprecation_warnings = False display_skipped_hosts = False

5) สร้าง playbook ที่ใช้สำหรับการติดตั้ง cluster (client + osds + mons)

\$ vim base.yml แก้ไขเป็นดังนี้

hosts: mons	
become: True	
roles:	
- ceph-mon	
hosts: osds	
become: True	
roles:	
- ceph-osd	
hosts: clients	
become: True	
roles:	
- ceph-client	

6) สร้าง playbook ที่ใช้สำหรับการติดตั้งเฉพาะ ceph clients

\$ vim clients-configure.yml

แก้ไขเป็นดังนี้

- hosts: mons

become: True

roles:

- ceph-fetch-keys

- hosts: clients

become: True

roles:

- ceph-client

7) สร้าง playbook ที่ใช้สำหรับการติดตั้งเฉพาะ ceph osds

\$ vim osd-configure.yml

แก้ไขเป็นดังนี้

- hosts: mons	
become: True	
roles:	
- ceph-fetch-keys	
- hosts: osd01	
become: True	
roles:	
- ceph-osd	
- hosts: osd02	
become: True	
roles:	
- ceph-osd	
- hosts: osd03	
become: True	

roles:

- ceph-osd

8) สร้าง inventories สำหรับการเลือก host ที่จะ deploy

\$ vim inventories

[mons] mons01 ansible_host=ceph-node1 mons02 ansible_host=ceph-node2 mons03 ansible_host=ceph-node3

[osds] osd01 ansible_host=ceph-node1 osd02 ansible_host=ceph-node2 osd03 ansible_host=ceph-node3

[clients] admin ansible_host=ceph-node1

9) กำหนดตัวแปรให้กับ ceph ทั้ง cluster

\$ vim group_vars/all ให้เพิ่มดังต่อไปนี้

dummy:
+###########
GENERAL
+##########
etch_directory: fetch/
cluster: ceph
sid: 9848b7d5-3933-4ae9-8f8b-c775929e744d
[#] generate_fsid: true
+######################################
INSTALL
+######################################
d x _ daxx _ a
#ชื่ออ้างอิ่งที่ใช้อ้างอิ่งใน inventory
non_group_name: mons
osd_group_name: osds
client_group_name: clients
ceph_origin: 'upstream'
##########
VERSION
##########
conhistoble: true
content stable. the
seph_stable_key. http://minol.tek-me.com/ceph/keys/retease.asc
epin_stable_release. Jewel
epir_stable_repo: http://minor.tek-me.com/ceph/debian-jewet

CEPH CONFIGURATION

ceph_conf_overrides: global: rbd_default_features: 3

10) กำหนดตัวแปรให้กับ ceph mon

\$ vim group_vars/mons

dummy: ########### # GENERAL # ########### fetch_directory: fetch/ cephx: true

11) กำหนดตัวแปรให้กับ ceph osds

\$ vim group_vars/osds

dummy:		
############		
# GENERAL #		
############		
fetch_directory: fetch/		
#######################################		
# CEPH OPTIONS		
#######################################		
cephx: true		
#######################################		
# Disable Default Scenario		
#######################################		
osd_auto_discovery: false		
osd_directory: false		
journal_collocation: false		
bluestore: false		
##############		

Enable N JOURNAL N OSD Scenario

################

raw_multi_journal: true

12) ตรวจสอบดูแต่ละเครื่องว่ามี Disk ครบถ้วน

ubuntu@ceph-node1:~\$ ssh ceph-node1 'sudo lsblk'						
NAME	MAJ:	min f	RM S	SIZE RO TYPE MOUNTPOINT		
sda	8:0	0	10G	0 disk		
L	sda1	8:1	0	10G 0 part /		
sdb	8:16	0	20G	0 disk		
sdc	8:32	0	10G	0 disk		
sdd	8:48	0	10G	0 disk		
sde	8:64	0	10G	0 disk		
sr0 1	l1:0	1 1	024M	0 rom		

ubuntu@ceph-node1:~\$ ssh ceph-node2 'sudo lsblk' NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT sda 8:0 0 10G 0 disk _____sda1 8:1 0 10G 0 part / sdb 8:16 0 20G 0 disk sdc 8:32 0 10G 0 disk sdd 8:48 0 10G 0 disk sde 8:64 0 10G 0 disk sr0 11:0 1 1024M 0 rom

ubuntu	@cep	h-nc	ode1:~	ssh cep	ph-node3 'sudo	lsblk'
NAME	MAJ:	MIN	RM S	ZE RO T	YPE MOUNTPOI	NT
sda	8:0	0	10G () disk		
L	sda1	8:1	0	10G 0 p	art /	
sdb	8:16	0	20G	0 disk		
sdc	8:32	0	10G) disk		
sdd	8:48	0	10G	0 disk		
sde	8:64	0	10G	0 disk		
sr0 1	l1:0	1 1	.024M	0 rom		

13) กำหนดตัวแปรให้กับ ceph osds ในแต่ล่ะ host

\$ vim host_vars/osd01

devices:	
- /dev/sdc	
- /dev/sdd	
- /dev/sde	
raw_journal_devices:	#N JOURNAL DEVICES FOR N OSDS
- /dev/sdb	
- /dev/sdb	
- /dev/sdb	

devices:

- /dev/sdc
- /dev/sdd
- /dev/sde

raw_journal_devices:

#N JOURNAL DEVICES FOR N OSDS

- /dev/sdb
- /dev/sdb
- /dev/sdb

\$ vim host_vars/osd03

--devices:
- /dev/sdc
- /dev/sdd
- /dev/sde

raw_journal_devices: #N JOURNAL DEVICES FOR N OSDS
- /dev/sdb
- /dev/sdb
- /dev/sdb
- /dev/sdb
- /dev/sdb

14) ทดสอบการ remote

\$ ansible all -i inventories -m ping

Install Ceph Cluster by Ansible

1) เริ่มติดตั้ง Ceph Ansible

\$ ansible-playbook base.yml

เมื่อติดตั้งเสร็จผลลัพธ์จะเป็นดังนี้

PLAY RECAP ********	*****	************	******	*****
admin	: ok=42	changed=0	unreachable=0	failed=0
mons01	: ok=55	changed=14	unreachable=0	failed=0
mons02	: ok=53	changed=12	unreachable=0	failed=0
mons03	: ok=53	changed=12	unreachable=0	failed=0
osd01	: ok=62	changed=1	unreachable=0	failed=0
osd02	: ok=61	changed=1	unreachable=0	failed=0
osd03	: ok=61	changed=1	unreachable=0	failed=0

2) ตรวจสอบ Ceph และตั้งค่า pg ให้เป็น 128

\$ sudo ceph osd pool set rbd pg_num 128 set pool 0 pg_num to 128

\$ sudo ceph osd pool set rbd pgp_num 128 set pool 0 pgp_num to 128

3) ตรวจสอบ ว่า Ceph OK แล้ว

\$ sudo ceph -s
cluster 9848b7d5-3933-4ae9-8f8b-c775929e744d
health HEALTH_OK
monmap e1: 3 mons at {ceph-node1=192.168.1.101:6789/0,ceph-node2=192.168.1.102:6789/0,ceph-
node3=192.168.1.103:6789/0}
election epoch 4, quorum 0,1,2 ceph-node1,ceph-node2,ceph-node3
osdmap e50: 9 osds: 9 up, 9 in
flags sortbitwise
pgmap v132: 128 pgs, 1 pools, 0 bytes data, 0 objects
308 MB used, 91752 MB / 92060 MB avail
128 active+clean
Create a Ceph User and Mount it

1) ทดสอบ เชื่อต่อและใช้งาน Ceph เริ่มจากการสร้าง User

\$ sudo su -

ceph auth get-or-create client.rbd mon 'allow r' osd 'allow class-read object_prefix rbd_children, allow rwx pool=rbd'

ceph auth get-or-create client.rbd | sudo tee /etc/ceph/ceph.client.rbd.keyring

[client.rbd]

key = AQDthtpXowj7HhAARz0VtV4yi5iEOmbL1MoDjA==

2) หลังจากสร้าง user แล้วเราจะได้ไฟล์ keyring มาด้านในจะมี key เพื่อใช้ในการ authen, ทดสอบการใช้งาน ceph

ด้วย client ที่สร้าง

ceph -s --name client.rbd

```
cluster 9848b7d5-3933-4ae9-8f8b-c775929e744d
health HEALTH_OK
monmap e1: 3 mons at {ceph-node1=192.168.1.101:6789/0,ceph-node2=192.168.1.102:6789/0,ceph-
node3=192.168.1.103:6789/0}
election epoch 4, quorum 0,1,2 ceph-node1,ceph-node2,ceph-node3
osdmap e50: 9 osds: 9 up, 9 in
flags sortbitwise
pgmap v132: 128 pgs, 1 pools, 0 bytes data, 0 objects
308 MB used, 91752 MB / 92060 MB avail
128 active+clean
```

3) สร้าง RDB Block ใหม่ขึ้นมาขนาด 10GB โดยใช้ Client ที่สร้าง

rbd create rbd1 --size 10240 --name client.rbd

4) ตรวจสอบ RBD Block ที่สร้างขึ้นมาด้วยคำสั่ง ls และ info

rbd ls -p rbd --name client.rbd

rbd --image rbd1 info --name client.rbd

rbd image 'rbd1':

size 10240 MB in 2560 objects order 22 (4096 kB objects) block_name_prefix: rbd_data.1055238e1f29 format: 2 features: layering flags:

5) ทำการ map RBD Block เข้ากับเครื่องเรา โดยที่เราจะมองเห็นเป็นเหมือน Disk ลูกหนึ่ง

rbd map --image rbd1 --name client.rbd id pool image snap device 0 rbd rbd1 - /dev/rbd0

6) ใช้ fdisk เพื่อดู Disk ที่เรา map มา

fdisk -l /dev/rbd0

Disk /dev/rbd0: 10.7 GB, 10737418240 bytes 255 heads, 63 sectors/track, 1305 cylinders, total 20971520 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 4194304 bytes / 4194304 bytes Disk identifier: 0x0000000

7) สร้าง directory และ สั่ง mount

mkdir /mnt/ceph-block01 # mount /dev/rbd0 /mnt/ceph-block01

8) ทดสอบการ เขียนไฟล์

cd /mnt/ceph-block01/ # touch test.txt