

Deep Dive into OpenStack Networking

Damrongsak Reetanon <= RHCA RHCDS RHCE RHCSA RHCI => Solutions Architect Red Hat (Thailand) September 22, 2016

Deep Dive into OpenStack Networking

RED HAT ENTERPRISE LINUX

Deep Dive into OpenStack Networking

Network/neutron-renaming

This is our whiteboard for handling the Quantum -> Neutron transition.

Summary: Starting with the Havana release, the OpenStack Networking project's code name is Neutron. Quantum is no longer used

https://wiki.openstack.org/wiki/Network/neutron-renaming

What is Neutron?

Neutron is an OpenStack project to provide "networking as a service" between interface devices (e.g., vNICs) managed by other Openstack services (e.g., nova).

Starting in the Folsom release, Neutron is a core and supported part of the OpenStack platform (for Essex, we were an "incubated" project, which means use is suggested only for those who really know what they're doing with Neutron).

NOVA

Compute

Manages the lifecycle of compute instances in an OpenStack environment. Responsibilities include spawning, scheduling and decomissioning of machines on demand.

Maturity

Adoption

Age

MORE DETAILS

NEUTRON

a,

Networking

Enables network connectivity as a service for other

OpenStack services, such as OpenStack Compute. Provides
an API for users to define networks and the attachments into
them. Has a pluggable architecture that supports many
popular networking vendors and technologies.

Adoption

Age

MORE DETAILS

SWIFT

Object Storage

Stores and retrieves arbitrary unstructured data objects via a RESTful, HTTP based API. It is highly fault tolerant with its data replication and scale out architecture. Its implementation is not like a file server with mountable directories.

7 of 8

Maturity

Adoption

Age

MORE DETAILS

CINDER

Block Storage

Provides persistent block storage to running instances. Its pluggable driver architecture facilitates the creation and management of block storage devices.

7 of 8

Maturity

Age

Provides an authentication and authorization service for other OpenStack services. Provides a catalog of endpoints for all OpenStack services.

Adoption

KEYSTONE

Identity

7 of 8

Maturity

Age

MORE DETAILS

GLANCE

Image Service

Stores and retrieves virtual machine disk images. OpenStack Compute makes use of this during instance provisioning.

7 of 8

Adoption Maturity

Age

MORE DETAILS

MORE DETAILS

NEUTRON ==

Networking

Project wiki page

View the install guide

Find this service in the Marketplace

About this project

Enables network connectivity as a service for other OpenStack services, such as OpenStack Compute. Provides an API for users to define networks and the attachments into them. Has a pluggable architecture that supports many popular networking vendors and technologies.

Neutron Components

All in One - Controller

Multiple Network Node

L3-High Availability

Distributed Virtual Router (DVR)

EAST - WEST Traffic

veth pair

Linux Bridge

openvswitch

veth pair

Linux Bridge

openvswitch

TUN (namely <u>network TUNnel</u>) simulates a network layer device and it operates with <u>layer 3</u> packets like <u>IP</u> packets. **TAP** (namely network tap) simulates a <u>link layer</u> device and it operates with layer 2 packets like Ethernet frames. TUN is used with <u>routing</u>, while TAP is used for creating a <u>network bridge</u>.

A TAP device, such as vnet0 is how hypervisors such as KVM and Xen implement a virtual network interface card (typically called a VIF or vNIC). An Ethernet frame sent to a TAP device is received by the guest operating system.

veth pair

Linux Bridge

openvswitch

A veth pair is a pair of directly connected virtual network interfaces. An Ethernet frame sent to one end of a veth pair is received by the other end of a veth pair. Networking uses veth pairs as virtual patch cables to make connections between virtual bridges

veth pair

Linux Bridge

openvswitch

A Linux bridge behaves like a simple MAC learning switch: you can connect multiple (physical or virtual) network interfaces devices to a Linux bridge. The Linux bridge uses a MAC caching table to record which interface on the bridge is used to communicate with a host on the link. For any Ethernet frames that come in from one interface attached to the bridge, the host MAC address and port on which the frame was received is recorded in the MAC caching table for a limited time. When the bridge needs to forward a frame, it will check to see if the frame's destination MAC address is recorded in the table. If so, the Linux bridge forwards the frame through only that port. If not, the frame is flooded to all network ports in the bridge, with the exception of the port where the frame was received.

veth pair

Linux Bridge

openvswitch

An Open vSwitch bridge behaves like a virtual switch: network interface devices connect to Open vSwitch bridge's ports, and the ports can be configured much like a physical switch's ports, including VLAN configurations.

```
instance#ip addr
TAP Device
                            2: eth0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast qlen 1000
                               link/ether fa:16:3e:42:11:db brd ff:ff:ff:ff:ff
                               inet 192.168.64.2/24 brd 192.168.64.255 scope global eth0
VM01
                               inet6 fe80::f816:3eff:fe42:11db/64 scope link
                                 valid Ift forever preferred Ift forever
    eth0
                     compute#ip addr
                      19: tap435e6cba-bc: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast master
   vnet0
                     qbr435e6cba-bc state UNKNOWN glen 500
                        link/ether fe:16:3e:42:11:db brd ff:ff:ff:ff:ff
                        inet6 fe80::fc16:3eff:fe42:11db/64 scope link
                          valid Ift forever preferred Ift forever
                                                   compute#cat /etc/libvirt/qemu/instance-0000001.xml
                        Port VLAN TAG
    Port VLAN TAG
                                                   <interface type='bridge'>
                                                       <mac address='fa:16:3e:42:11:db'/>
                                                       <source bridge='qbr435e6cba-bc'/>
                                                       <target dev='tap435e6cba-bc'/>
                                                       <model type='virtio'/>
                                                       <driver name='qemu'/>
                                                       <address type='pci' domain='0x0000' bus='0x00' slot='0x03'
                                                   function='0x0'/>
                                                   </interface>
```



```
Linux
                             instance#ip addr
                             2: eth0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast qlen 1000
   Bridge
                               link/ether fa:16:3e:42:11:db brd ff:ff:ff:ff:ff
                               inet 192.168.64.2/24 brd 192.168.64.255 scope global eth0
VM01
                               inet6 fe80::f816:3eff:fe42:11db/64 scope link
                                 valid Ift forever preferred Ift forever
   eth0
                    compute#ip addr
                    19: tap435e6cba-bc: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast master
                    qbr435e6cba-bc state UNKNOWN glen 500
   vnet0
                      link/ether fe:16:3e:42:11:db brd ff:ff:ff:ff:ff
  qbrXXX
                      inet6 fe80::fc16:3eff:fe42:11db/64 scope link
                        valid Ift forever preferred Ift forever
  qvbXXX
                         compute# brctl show
                                                   bridge id
                         bridge
                                                                                 interfaces
                                                                  STP enabled
                                            name
                         qbr435e6cba-bc
                                               8000.ee64c7311769
                                                                                 qvb435e6cba-bc
                                                                       no
    Port VLAN TAG
                        Port VLAN TAG
                                                                                 tap435e6cba-bc
                                             compute#cat /etc/libvirt/qemu/instance-00000001.xml
                                             <interface type='bridge'>
                                                <mac address='fa:16:3e:42:11:db'/>
                                                <source bridge='qbr435e6cba-bc'/>
                                                <target dev='tap435e6cba-bc'/>
                                                <model type='virtio'/>
                                                <driver name='qemu'/>
                                                <address type='pci' domain='0x0000' bus='0x00' slot='0x03'
                                            function='0x0'/>
                                             </interface>
```


ip netns Network Topology qdhcp-6af79125-63cb-47cc-b8af-7981e860a73d grouter-4cfd7137-86c2-4855-a81a-8a5cf37a85e7 # ip netns exec qrouter-4cfd7137-86c2-4855-a81a-8a5cf37a85e7 ip addr 13: qr-8a679f69-7d: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether fa:16:3e:91:60:f5 brd ff:ff:ff:ff:ff inet **192.168.64.1**/24-brd 192.168.64.255 scope global qr-8a679f69-7d valid Ift forever preferred Ift forever inet6 fe80::f816:3eff:fe91:60f5/64 scope link 192.168.64.1 valid_lft forever preferred_lft forever Router 14: qg-951729dd-88: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether fa:16:3e:8e:2f:76 brd ff:ff:ff:ff:ff inet 192.168.32.50/24 brd 192.168.32.255 scope global qg-951729dd-88 Instance valid_lft forever preferred_lft forever inet **192.168.32.51**/32 brd 192.168.32.51 scope global qg-951729dd-88 valid_lft forever preferred_lft forever inet6 fe80::f816:3eff:fe8e:2f76/64 scope link valid Ift forever preferred Ift forever compute# ping **192.168.64.2** PING 192.168.64.2 (192.168.64.2) 56(84) bytes of data. --- 192.168.64.2 ping statistics ---5 packets transmitted, 0 received, 100% packet loss, time 3999ms compute# ip netns exec qrouter-4cfd7137-86c2-4855-a81a-8a5cf37a85e7 ping **192.168.64.2** PING 192.168.64.2 (192.168.64.2) 56(84) bytes of data. 64 bytes from 192.168.64.2: icmp seq=1 ttl=64 time=7.95 ms Floating IPs 64 bytes from 192.168.64.2: icmp seq=2 ttl=64 time=1.30 ms 64 bytes from 192.168.64.2: icmp_seq=3 ttl=64 time=0.984 ms **IP Address** Floating IP Pool Instance --- 192.168.64.2 ping statistics ---192.168.32.51 mycirros1 ext 3 packets transmitted, 3 received, 0% packet loss, time 2003ms rtt min/avg/max/mdev = 0.984/3.414/7.955/3.213 ms

